Reliance Industries Limited

Plastics : "Green" Construction Materials

S. S. Naik

Reliance Industries Ltd. Mumbai

Index

- Power Situation India
- Green Buildings
- Plastics A friend Indeed
- Plastics in Building and Construction
- Plastics in Energy Conservation
- Plastics Pipes in Water Efficiency
- Plastics for resource Management
- Plastics For Waste Management
- The Way Of Green Future

Power Situation in India

National Priorities

Energy efficiency

- Reduced use of fossil fuel
- Water efficiency
- Handling of household waste
- Health and well being of occupants

Reduced dependency on virgin materials

Green Building – Addressing the National Priorities

Indian Power Sector

Present Situation

- Total Installed Capacity
- Power Shortage
- T & D Losses

- : 185496 MW
- ~ 10% (average)
- ~ 13.5% (Peak)
- : 30 45%
- Half of rural households still do not have access to electricity
- One of the lowest per capita consumption of electricity(600kWH)

Solution

- New generation (Govt. & PPP) a highly capital intensive proposition
- Reduce aggregate techno-commercial losses
- Demand side management

Vision – Energy Independent India by 2035

Green Buildings

Green Building – The Concept

Reducing operating costs by increasing

productivity and using less energy and water

Improved public and occupant health due to

improved air quality

Reduced environmental impacts by lowering

storm water run-off and the heat island effect

To achieve not only ecological balance but aesthetic harmony

Need a Complete Paradigm Shift....

How to Reduce Energy Consumption?

- To increase efficiency of the building envelop
 - Use high efficiency windows and insulation in walls, ceilings and floors.
 - Passive solar building design
 - Effective window placement (day lighting) can provide more natural light
 - Solar water heating
 - Insulation to pipes and ducts of heating and cooling systems
 - Use of fluorescent lighting
 - Finally onsite generation of renewable energy through solar, wind, hydro power or biomass.

Reliance

POLYMERS

Use Energy Efficient Plastics

Why Plastics.....

Sustainability of Plastics

- Energy efficient materials utilize less energy at Raw material manufacturing, production, transportation and installation stages
- Material use Saving of natural resources through recycling.
 - Low emission processes low GHG production during manufacturing and usage
- Low waste production durable and recyclable
- Economic recovery plastics can be recycled or used to regain intermediate raw materials or used for thermal recovery through incineration.
- Disposal of residues due to recyclability put less burden for disposal

Plastics in B & C – A Snapshot

Plastics - Global End Use Markets

Plastic Products in a Building

A, B pumps)	: Casing Pipe (for tube well / hand
D	: Riser Pipe
С, Е	: Water Supply lines.
F	: PVC Plumbing pipes
G	: PP-R Plumbing pipes
H, L	: SWR pipes
1	: Rain Water Pipe
J & K	: Sewerage Pipes
L	: Gutter for rain water harvesting
М	: Inspection Chamber
N	: Gully trap
0	: Water storage tank
Ρ	: Door
Q	: Window
R	: Grating
S	: PVC Furniture
τ	: PVC Flooring
L_y	

Conservation of Energy and Environment Through Plastics

EVERY WATT COUNTS

Energy Efficiency through Plastic Pipes

Pipe diameters considered are PVC -110 mm, HDPE – 125 mm and DI – 125 mm to maintain same flow rate in all three pipelines Energy requirement values given are calculated for 3 meter length for all pipes (10 Kg pressure rating)

Plastic Pipes – Reduction in GHG emission

Pipe diameters considered are PVC -110 mm, HDPE – 125 mm and DI – 125 mm to maintain same flow rate in all three pipelines CO2 emission values given are calculated for 3 meter length for all pipes (10 Kg pressure rating).

u PVC Windows - Energy Saving Proposition

10000

1000

100

10

1

Kilowatt hours

1981.1

74.5

253.6

Extraction of Raw Transport & assembly Recycling Total Usage materials PVC Aluminium Wood Life Cycle Study by Universitat Politecnica De Catalunya, Barcelona

PVC and Aluminium Windows considered for calculation measuring 1.34 meter X 1.34 meter . Energy values are calculated for one window of PVC & Aluminium

u PVC Windows – Reduction in GHG emission Reliance

PVC and Aluminium Windows considered for calculation measuring 1.34 meter X 1.34 meter . CO2 emission values are calculated for one window of PVC & Aluminium

Energy Saving Case Study 1-Hotel Taj Blue Diamond

	Elgi – Infinity(RTVP) Windows	Replaced Aluminum Windows
No. of windows (Guest rooms)	58	58
Glazing configuration	6 + 12 + 6 (Clear)	6mm clear
Area of one window	=7.45 Sq.M	7.45 Sq.M
Glass area	=6.16 Sq.M	6.83 Sq.M
Frame area	=1.29 Sq.M	0.62 Sq.M
Relative heat gain (RHG) through glass	=567 W/m 2 x 6.16m2 =3492.72W	663W/m2 x 6.83 m2 =4528.29 W
Direct energy transfer (DET) through frame	=1.4 W/m2.K x 8 K x 1.29m2 =14.44 W	16 W/m2.K x 8 K x .62m2 =79.36 W
Total heat gain	=3492.72 W +14.44 W =3507.16W i.e.3.51 KW	4528 W + 79.36 W =4607.65W i.e.4.61 KW
For 58 windows	3.51 KW x 58 =203.58 KW	4.61KW x 58 =261.38 KW
Assuming, 10 hours of a/c usage per day and 80 % occupancy rate: Annual usage	10 x 365 x 80/100 =2920 hours	10 x 365 x 80/100 =2920 hours
Annual power consumption to compensate the heat gain	203.58 KW x 2920 hr. =594454 KWhr.	261.38 KW x 2920 hr. =763230 KWhr.

*Savings ~ 1, 60,000 KWh

Calculations are based on test results of SARA ELGI ARTERIORS LTD.

Energy Saving Case Study 2 - IIT Delhi

- Location : IIT Delhi
- Floor area 1000Sqft
- window area 300Sqft
- Initial Cost- Conventional: Rs 175/Sqft ; PVC double glazed: Rs 235/ Sqft
- Increase in initial cost Rs 18000/-
- Power saving About 4350 units / annum
- Total saving About Rs 15000 p.a.

भिषडीकियों से पूप जाती है जो रोप्तानी और भर्मी देखे है इसलिये ऊलो-दय इमारलों में फिइडकियों का यहा मतल है। एल्युमिनियम या स्टील के क्रेम काली खिडफियों की तुलगा में पी की मी (पीली विपाइल कलोराइड) का फ्रेम, कुस्टा कांच की परन और जहे हुये विपडों फ्रेम, तथा खुली जगहों के बीव मधी गारकट लगाने से उज्यों की जपडी बचल होती है।

नची विल्ली में इंडियन इस्प्लीहपूट आफ टेक्नोलोजी खास विले मचे अध्ययन से पता चला है कि जगर विजली का मतसूल 5 रु. प्रति पूलिट की दर से लगाने तो खब्चे साल भर में दी वसूहत हो जाता है। नीचे के गंधी सारणी में 735 वर्ग मीटर वाली इमारत में 30 प्रतिभात विद्वजिन्दों पर विजली की बचल का दिसाब दिया गंधा है।

	भाषाः (स. १८४८-८४ मे उल्ला की काल्ड (देवकाल्ड)	अग्रेत्सरयना सारफा 800 स/ यमे मोहर	ার্জন ব্যানির জনস্য কর ভয়সন
বেলন	34,545	1,76,400	ৰ আৰ্থ
and	49,980	1,76,400	8 सदीने

क के जाता पुरुषत व्यक्ताता का तरह से एक १९२४ । संस्थान की जाती है ।

> PVC windows substitute of Aluminum (Source: Bureau of Energy Efficiency (BEE) leaflet)

PVC Windows – major contributor to Energy/Environment conservation.....

PVC Windows & Doors

No other material can fulfill all these requirements

PVC Windows & Doors material of choice across the World

Geography	Aluminum(%)	MS(%)	Timber(%)	PVC(%)
Europe	22		12	66
Russia	10		24	66
Latin America	76		18	6
North America	7	4	27	62
China	50			50
Turkey	20		15	65
India	45	24	25	7

Also used extensively in Gulf, Thailand, Indonesia Malaysia, S.Korea, Taiwan, Iran, Vietnam

Projects with uPVC Windows

Plastic Pipes in Building & Construction

- Water supply
- Plumbing Pipes
- Sewage Transmission
- Soil, waste discharge system
- Rain Water Harvesting
- Borewell casings
- Column pipes

Rain Water Harvesting

- Components Half round gutter, SWR, Casing & Column pipes
- Advantages of PVC pipes in RWH
 - No contamination of water
 - Easy discharge due to smooth inner surface
 - No fungal growth or biofilm formation
 - No maintenance
 - Easy installations

Plastic Pipes for Micro Irrigation System

PVC Pipe, Polyethylene tubes and Pipe Fittings play very important role in micro irrigation system Advantages of PVC & PE pipes in drip systems include :

Low pumping energy required

Efficient water distribution due to water tight

joints

 \Box

 \Box

 \Box

- Easy to install and maintain
- Low operating costs
- Recyclable
- Resistant to chemicals, suit for addition of
- fertilizers

Plastic Pipes in Support of Green Buildings

Plastic pipes plays important role in Building and Construction by

- Protecting occupant health by delivering safe water
- Contributing to energy saving as require low pumping energy
- Helping to maintain ecological balance by less consumption of natural resources and low emission of toxic gases
- Contribute to reduction in waste generation, being recyclable
- Excellent long term performance hence almost no maintenance
- **Reduce environmental impacts by easy transport of run off water**
- Conserve environment by reducing pollution of water resources.

Plastics for Resource Conservation

Consumption of Oil

Plastics put the least pressure on natural resources

Forests cover in India

Over 16% world population
Over 15% livestock population
~ 2% of geographical area
< 1% of the forest area

.....and the forest cover is depleting year by year

Plastics – Conservation of Forest Resource

5 lakh PVC bath room Doors

consume 6,000 MT of **Plastics**

saves 140,000 Cu M. of Wood

32,000 Hectares of Forests !!!

Green architecture seeks to reduce waste of energy, water and materials

- Reduce the amount of material going to landfills.
- Providing compost bins
- Use of Greywater for subsurface irrigation or to flush toilets and wash cars (if treated).
- Rain water collection system

Conversion of waste and waste water into fertilizers

Recycling

Reusability & Recyclablility of plastic materials making them a green materials.

Polyethylene Biogas Dome

Replacement of brick work dome by Polyethylene dome – savings in time & energy for installation

Plastics – contribution in energy conservation at every stage

Plants With PE Domes : Features

- Gas Tightness
- Easy to handle, transport and install as light in weight.
- No effect of gas and chemicals in the system as well as stabilized against UV radiations
- Construction time reduced to 6 days as against minimum of 21 days for conventional plants
- Dome curing totally eliminated
- No specialized skills needed for Dome installation
- Transfer of Technology of Implementation to grass root level organizations is easy
- Most suited to renovate the existing plants defunct due to dome leakage/cracks

Approved by MNRE

Plastic waste to fuel

- Plastic products on the completion of life cycle can be put to the different processes of waste management.
- One of such solution is Fuel from Plastic Waste.
 - Plastic Waste is converted to diesel equivalent fuel by pyrolysis in presence of catalyst.
 - Cost effective technology for the process is indigenously developed
 - The fuel can be used as fuel for generators, agricultural pumps or for industrial heating applications. This fuel is much cost effective compared to diesel.
 - Fuel generated is approved by various National & International Agencies as well as Pollution Control Boards.

Plastic Waste - Resourceful Material

The Bottom line

Life Cycle Cost Consideration – Need of the Hour

Plastics Conserve E2

Plastics Conserve E2

It is a Great Start

But, it's only the beginning !

Green Joining Hands : Way to Future

Community

Government

Nodal Agencies

B & C authorities

Planners & designers

Plastics Industry (Raw Materials, Additives, Machinery)

Think out of the box...

For most people the horizon is as far as they can see for some it represents the threshold to an unseen world of New Opportunities

